|
|
|
|
|
|
|
¸ñÂ÷ |
|
1. Linear Functions and Expressions
1.1 Slope
1.2 Point-Slope Form
1.3 Tangency
1.4 Perpendicular and Parallel Lines
1.5 Slope Sign and Function
1.6 The Meaning and Application of Intersection Points
1.7 tan |
|
|
|
ÀúÀÚ
|
|
À¯Çϸ²
¹Ì±¹ Northwestern University, B.A. in Mathematics and Economics (³ë½º¿þ½ºÅÏ ´ëÇб³ ¼öÇаú/°æÁ¦Çаú Á¹¾÷) ¸¶½ºÅÍÇÁ·¾ ¼öÇпµ¿ª ´ëÇ¥°»ç ¾Ð±¸Á¤ ÇöÀå°ÀÇ ReachPrep ¿øÀå
°íµîÇб³ ½ÃÀý ¹®°ú¿´´Ù°¡, ¹Ì±¹ ³ë½º¿þ½ºÅÏ ´ëÇб³ ÇкΠ½ÃÀý ÀçÇÐ Áß ¼öÇп¡ ¸Å ·áµÇ¾î, Calculus ¹× Multivariable Calculus Á¶±³ È°µ¿ ¹× ¼öÇÐ °ÀÇ È°µ¿À» ÇØ¿Â ¹®/ÀÌ°ú¸¦ ¾Æ¿ì¸£´Â µ¶Æ¯ÇÑ ÀÌ·ÂÀ» °¡Áø °»çÀÌ´Ù. ÇöÀç ¾Ð±¸Á¤ ¹Ì±¹¼öÇÐ/°úÇÐÀü¹® ÇпøÀ¸·Î ReachPrep(¸®Ä¡ÇÁ·¾)À» ¿î¿µ ÁßÀ̸ç, ¹Ì±¹ ¸í¹® º¸µù½ºÄð Çлýµé°ú ±¹³» ¿Ü±¹ÀÎÇб³ ¹× ±¹Á¦Çб³ ÇлýµéÀ» ²ÙÁØÈ÷ ÁöµµÇÏ¸é¼ ¸í¼ºÀ» ½×¾Æ°¡°í ÀÖ´Ù. 2010³â ÀÚ±âÁÖµµÇнÀ¼ÀÎ ¡°¸ôÀÔ°øºÎ¡±¸¦ ÁýÇÊÇÑ ÀÌÈÄ, ¹Ì±¹ Áß°í±³¼öÇп¡ °ü½ÉÀ» º» °ÝÀûÀ¸·Î °¡Áö°Ô µÇ¾ú°í, ÇöÀç À¯Çϸ²Ä¿¸®Å§·³ Essential Math Series¸¦ ÁýÇÊÇÏ¿©, ¾Ð±¸Á¤ ÇöÀå°ÀÇ ¹Ì±¹¼öÇÐÇÁ¸®Æнº¸¦ ÅëÇØ, ¾ÐµµÀûÀ¸·Î ¸¹Àº ÇлýµéÀÇ Çǵå¹éÀ» Åë ÇØ, ¹ßÀüÀûÀ¸·Î ±³Àç ÁýÇÊ¿¡ Èû¾²°í ÀÖ´Ù. À¯ÇÐºÐ¾ß ÀÎÅÍ³Ý °ÀÇ 1À§ »çÀÌÆ®ÀÎ ¸¶½ºÅÍÇÁ·¾ ¼öÇпµ¿ª ´ëÇ¥°»ç Áß ÇÑ ¸íÀ¸·Î ¹Ì ±¹ ¼öÇÐ Ä¿¸®Å§·³ÀÇ ±âÃʼöÇкÎÅÍ °æ½Ã¼öÇбîÁö ¸ðµÎ ¿µ¾î¿Í Çѱ¹¾î·Î °ÀÇÇϸé¼, ½ÇÀü °æÇèÀ» ½×¾Æ ±× Àü¹®¼ºÀ» È®°íÈ÷ ÇÏ°í ÀÖ´Ù.
[Àú ¼] ¸ôÀÔ°øºÎ The Essential Workbook for SAT Math Level 2
Essential Math Series ½Ã¸®Áî
|
¸ôÀÔ°øºÎ | À¯Çϸ² | ·£´ýÇϿ콺ÄÚ¸®¾Æ
The Essential Guide to GEOMETRY | À¯Çϸ² | Ç츣¸óÇϿ콺
The Essential Guide to Prealgebra | À¯Çϸ² | Ç츣¸óÇϿ콺
The Essential Guide to Algebra 1 | À¯Çϸ² | Ç츣¸óÇϿ콺
The Essential Guide to Algebra 2 | À¯Çϸ² | Ç츣¸óÇϿ콺
|
|
|
|
|
|
|
Ãâ°í¾È³» |
|
|
Ãâ°í¶õ ÀÎÅÍÆÄÅ© ¹°·ùâ°í¿¡¼ µµ¼°¡ Æ÷ÀåµÇ¾î ³ª°¡´Â ½ÃÁ¡À» ¸»Çϸç, ½ÇÁ¦ °í°´´Ô²²¼ ¼ö·ÉÇϽô ½Ã°£Àº »óÇ°Áغñ¿Ï·áÇØ Ãâ°íÇÑ ³¯Â¥ + Åùè»ç ¹è¼ÛÀÏÀÔ´Ï´Ù. |
|
ÀÎÅÍÆÄÅ© µµ¼´Â ¸ðµç »óÇ°ÀÇ Àç°í°¡ ÃæÁ·ÇÒ ½Ã¿¡ ÀÏ°ý Ãâ°í¸¦ ÇÕ´Ï´Ù. |
|
ÀϺΠÀç°í¿¡ ´ëÇÑ Ãâ°í°¡ ÇÊ¿äÇÒ ½Ã¿¡´Â ´ã´çÀÚ¿¡°Ô Á÷Á¢ ¿¬¶ôÇϽðųª, °í°´¼¾ÅÍ(°í°´¼¾ÅÍ(1577-2555)·Î ¿¬¶ôÁֽñ⠹ٶø´Ï´Ù. |
|
¹è¼Ûºñ ¾È³» |
|
|
ÀÎÅÍÆÄÅ© µµ¼ ´ë·®±¸¸Å´Â ¹è¼Û·á°¡ ¹«·áÀÔ´Ï´Ù. |
|
´Ü, 1°³ÀÇ »óÇ°À» ´Ù¼öÀÇ ¹è¼ÛÁö·Î ÀÏ°ý ¹ß¼Û½Ã¿¡´Â 1°³ÀÇ ¹è¼ÛÁö´ç 2,000¿øÀÇ ¹è¼Ûºñ°¡ ºÎ°úµË´Ï´Ù. |
¾Ë¾ÆµÎ¼¼¿ä! |
|
|
°í°´´Ô²²¼ ÁÖ¹®ÇϽŠµµ¼¶óµµ µµ¸Å»ó ¹× ÃâÆÇ»ç »çÁ¤¿¡ µû¶ó Ç°Àý/ÀýÆÇ µîÀÇ »çÀ¯·Î Ãë¼ÒµÉ ¼ö ÀÖ½À´Ï´Ù. |
|
Åùè»ç ¹è¼ÛÀÏÀÎ ¼¿ï ¹× ¼öµµ±ÇÀº 1~2ÀÏ, Áö¹æÀº 2~3ÀÏ, µµ¼, »ê°£, ±ººÎ´ë´Â 3ÀÏ ÀÌ»óÀÇ ½Ã°£ÀÌ ¼Ò¿äµË´Ï´Ù.
(´Ü, Åä/ÀÏ¿äÀÏ Á¦¿Ü) |
|
|
|
|
ÀÎÅÍÆÄÅ©µµ¼´Â °í°´´ÔÀÇ ´Ü¼ø º¯½É¿¡ ÀÇÇÑ ±³È¯°ú ¹ÝÇ°¿¡ µå´Â ºñ¿ëÀº °í°´´ÔÀÌ ÁöºÒÄÉ µË´Ï´Ù.
´Ü, »óÇ°À̳ª ¼ºñ½º ÀÚüÀÇ ÇÏÀÚ·Î ÀÎÇÑ ±³È¯ ¹× ¹ÝÇ°Àº ¹«·á·Î ¹ÝÇ° µË´Ï´Ù.
±³È¯/¹ÝÇ°/º¸ÁõÁ¶°Ç ¹× Ç°Áúº¸Áõ ±âÁØÀº ¼ÒºñÀڱ⺻¹ý¿¡ µû¸¥ ¼ÒºñÀÚ ºÐÀï ÇØ°á ±âÁØ¿¡ µû¶ó ÇÇÇظ¦ º¸»ó ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù.
Á¤È®ÇÑ È¯ºÒ ¹æ¹ý ¹× ȯºÒÀÌ Áö¿¬µÉ °æ¿ì 1:1¹®ÀÇ °Ô½ÃÆÇ ¶Ç´Â °í°´¼¾ÅÍ(1577-2555)·Î ¿¬¶ô Áֽñ⠹ٶø´Ï´Ù.
¼ÒºñÀÚ ÇÇÇغ¸»óÀÇ ºÐÀïó¸® µî¿¡ °üÇÑ »çÇ×Àº ¼ÒºñÀÚºÐÀïÇØ°á±âÁØ(°øÁ¤°Å·¡À§¿øȸ °í½Ã)¿¡ µû¶ó ºñÇØ º¸»ó ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù.
|
±³È¯ ¹× ¹ÝÇ°ÀÌ °¡´ÉÇÑ °æ¿ì |
|
|
»óÇ°À» °ø±Þ ¹ÞÀ¸½Å ³¯·ÎºÎÅÍ 7ÀÏÀ̳» °¡´ÉÇÕ´Ï´Ù. |
|
°ø±Þ¹ÞÀ¸½Å »óÇ°ÀÇ ³»¿ëÀÌ Ç¥½Ã, ±¤°í ³»¿ë°ú ´Ù¸£°Å³ª ´Ù¸£°Ô ÀÌÇàµÈ °æ¿ì¿¡´Â °ø±Þ¹ÞÀº ³¯·ÎºÎÅÍ 3°³¿ùÀ̳», ±×»ç½ÇÀ» ¾Ë°Ô µÈ ³¯ ¶Ç´Â ¾Ë ¼ö ÀÖ¾ú´ø ³¯·ÎºÎÅÍ 30ÀÏÀ̳» °¡´ÉÇÕ´Ï´Ù. |
|
»óÇ°¿¡ ¾Æ¹«·± ÇÏÀÚ°¡ ¾ø´Â °æ¿ì ¼ÒºñÀÚÀÇ °í°´º¯½É¿¡ ÀÇÇÑ ±³È¯Àº »óÇ°ÀÇ Æ÷Àå»óÅ µîÀÌ ÀüÇô ¼Õ»óµÇÁö ¾ÊÀº °æ¿ì¿¡ ÇÑÇÏ¿© °¡´ÉÇÕ´Ï´Ù.
|
|
|
|
±³È¯ ¹× ¹ÝÇ°ÀÌ ºÒ°¡´ÉÇÑ °æ¿ì |
|
|
|
°í°´´ÔÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óÇ° µîÀÌ ¸ê½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì´Â ºÒ°¡´ÉÇÕ´Ï´Ù. (´Ü, »óÇ°ÀÇ ³»¿ëÀ» È®ÀÎÇϱâ À§ÇÏ¿© Æ÷Àå µîÀ» ÈѼÕÇÑ °æ¿ì´Â Á¦¿Ü) |
|
½Ã°£ÀÌ Áö³²¿¡ µû¶ó ÀçÆǸŰ¡ °ï¶õÇÒ Á¤µµ·Î ¹°Ç°ÀÇ °¡Ä¡°¡ ¶³¾îÁø °æ¿ì´Â ºÒ°¡´ÉÇÕ´Ï´Ù. |
|
Æ÷Àå °³ºÀµÇ¾î »óÇ° °¡Ä¡°¡ ÈÑ¼ÕµÈ °æ¿ì´Â ºÒ°¡´ÉÇÕ´Ï´Ù. |
|
|
´Ù¹è¼ÛÁöÀÇ °æ¿ì ¹ÝÇ° ȯºÒ |
|
|
|
´Ù¹è¼ÛÁöÀÇ °æ¿ì ´Ù¸¥ Áö¿ªÀÇ ¹ÝÇ°À» µ¿½Ã¿¡ ÁøÇàÇÒ ¼ö ¾ø½À´Ï´Ù. |
|
1°³ Áö¿ªÀÇ ¹ÝÇ°ÀÌ ¿Ï·áµÈ ÈÄ ´Ù¸¥ Áö¿ª ¹ÝÇ°À» ÁøÇàÇÒ ¼ö ÀÖÀ¸¹Ç·Î, ÀÌÁ¡ ¾çÇØÇØ Áֽñ⠹ٶø´Ï´Ù. |
|
|
|
|
|
|