|
|
|
|
|
|
|
¸ñÂ÷ |
|
CHAPTER 01 STATA °³¿ä
Çö´ë »çȸ¿Í »çÀ̹ö °ø°£/»ýÅ°è
»çÀ̹ö ¹üÁË
±â¾÷ »çÀ̹ö º¸¾ÈÀÇ °æÇâ
»çÀ̹ö ¹üÁË´Â ±¹°æÀ» ³Ñ´Â´Ù
CHAPTER 02 µµ¿òÀÌ µÇ´Â °³³äµé
°¡¼³°ËÁ¤°ú ¿À·ù
ÀÚÀ¯µµ
Model Fitness
ź·Â¼º
ÇÑ°èÈ¿°ú
°è¼öÀÇ Çؼ®
¼±Çü¼º
°øºÐ»ê
ÁÖ¼ººÐ ºÐ¼®
Diebold-Mariano
CHAPTER 03 ¼±Çüȸ±Í
´Ü¼ø ¼±Çü ȸ±Í
ÁÖ¿ä ÃßÁ¤·®
½Å·Ú±¸°£
CHAPTER 04 STATA
µ¥ÀÌÅÍ ºÒ·¯¿À±â
·Î±×¿Í µµ¿ò¸»
Factor Variable
Descriptive Statistics
ȸ±ÍºÐ¼®
ÀýÆí ¸ðÀǺ¯¼ö
±â¿ï±â ¸ðÀǺ¯¼ö
½Ã°è¿ µ¥ÀÌÅÍ
AR(Auto Regressive)
MA(Moving Average)
ARMA(Auto Regressive Moving Average)
ARIMA(Auto Regressive Integrated Moving Average)
ARDL(Auto Regressive Distributed Lag)
IC(Information Criterion)
ÀÌºÐ»ê ½Ã°è¿ ¸ðÇü
±â¼ú Åë°è
Ư¼º ºÐ¼®
´ÜÀ§±Ù °ËÁ¤
Á¤»ó¼º È®º¸
¸ðÇü ¼±ÅÃ
¿¹Ãø
CHAPTER 05 Advanced Topic
Do File Programming
Data Types
Python Interface
Machine Learning
Âü°í Delta Method
Out of Bag
ã¾Æº¸±â
Âü°í¹®Çå |
|
|
|
ÀúÀÚ
|
|
½Å¿ìö
ºÎ»ê´ëÇб³ °æÁ¦ÇÐ ¹Ú»ç´Ù. ÇöÀç Çѱ¹¿¹Å¹°áÁ¦¿ø Á¤º¸º¸È£ÃÖ°íÃ¥ÀÓÀÚ´Ù.
|
|
°¨¼ö
|
|
À±¼º¹Î
°í·Á´ëÇб³ °æÁ¦ÇÐ ¹Ú»ç·Î, ºÎ°æ´ëÇб³ °æÁ¦ÇкΠ±³¼ö¸¦ ¿ªÀÓÇß´Ù. ÇöÀç ºÎ»ê´ëÇб³ °æÁ¦ÇкΠ±³¼ö´Ù.
|
|
|
|
|
|
|
|
Ãâ°í¾È³» |
|
|
Ãâ°í¶õ ÀÎÅÍÆÄÅ© ¹°·ùâ°í¿¡¼ µµ¼°¡ Æ÷ÀåµÇ¾î ³ª°¡´Â ½ÃÁ¡À» ¸»Çϸç, ½ÇÁ¦ °í°´´Ô²²¼ ¼ö·ÉÇϽô ½Ã°£Àº »óÇ°Áغñ¿Ï·áÇØ Ãâ°íÇÑ ³¯Â¥ + Åùè»ç ¹è¼ÛÀÏÀÔ´Ï´Ù. |
|
ÀÎÅÍÆÄÅ© µµ¼´Â ¸ðµç »óÇ°ÀÇ Àç°í°¡ ÃæÁ·ÇÒ ½Ã¿¡ ÀÏ°ý Ãâ°í¸¦ ÇÕ´Ï´Ù. |
|
ÀϺΠÀç°í¿¡ ´ëÇÑ Ãâ°í°¡ ÇÊ¿äÇÒ ½Ã¿¡´Â ´ã´çÀÚ¿¡°Ô Á÷Á¢ ¿¬¶ôÇϽðųª, °í°´¼¾ÅÍ(°í°´¼¾ÅÍ(1577-2555)·Î ¿¬¶ôÁֽñ⠹ٶø´Ï´Ù. |
|
¹è¼Ûºñ ¾È³» |
|
|
ÀÎÅÍÆÄÅ© µµ¼ ´ë·®±¸¸Å´Â ¹è¼Û·á°¡ ¹«·áÀÔ´Ï´Ù. |
|
´Ü, 1°³ÀÇ »óÇ°À» ´Ù¼öÀÇ ¹è¼ÛÁö·Î ÀÏ°ý ¹ß¼Û½Ã¿¡´Â 1°³ÀÇ ¹è¼ÛÁö´ç 2,000¿øÀÇ ¹è¼Ûºñ°¡ ºÎ°úµË´Ï´Ù. |
¾Ë¾ÆµÎ¼¼¿ä! |
|
|
°í°´´Ô²²¼ ÁÖ¹®ÇϽŠµµ¼¶óµµ µµ¸Å»ó ¹× ÃâÆÇ»ç »çÁ¤¿¡ µû¶ó Ç°Àý/ÀýÆÇ µîÀÇ »çÀ¯·Î Ãë¼ÒµÉ ¼ö ÀÖ½À´Ï´Ù. |
|
Åùè»ç ¹è¼ÛÀÏÀÎ ¼¿ï ¹× ¼öµµ±ÇÀº 1~2ÀÏ, Áö¹æÀº 2~3ÀÏ, µµ¼, »ê°£, ±ººÎ´ë´Â 3ÀÏ ÀÌ»óÀÇ ½Ã°£ÀÌ ¼Ò¿äµË´Ï´Ù.
(´Ü, Åä/ÀÏ¿äÀÏ Á¦¿Ü) |
|
|
|
|
ÀÎÅÍÆÄÅ©µµ¼´Â °í°´´ÔÀÇ ´Ü¼ø º¯½É¿¡ ÀÇÇÑ ±³È¯°ú ¹ÝÇ°¿¡ µå´Â ºñ¿ëÀº °í°´´ÔÀÌ ÁöºÒÄÉ µË´Ï´Ù.
´Ü, »óÇ°À̳ª ¼ºñ½º ÀÚüÀÇ ÇÏÀÚ·Î ÀÎÇÑ ±³È¯ ¹× ¹ÝÇ°Àº ¹«·á·Î ¹ÝÇ° µË´Ï´Ù.
±³È¯/¹ÝÇ°/º¸ÁõÁ¶°Ç ¹× Ç°Áúº¸Áõ ±âÁØÀº ¼ÒºñÀڱ⺻¹ý¿¡ µû¸¥ ¼ÒºñÀÚ ºÐÀï ÇØ°á ±âÁØ¿¡ µû¶ó ÇÇÇظ¦ º¸»ó ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù.
Á¤È®ÇÑ È¯ºÒ ¹æ¹ý ¹× ȯºÒÀÌ Áö¿¬µÉ °æ¿ì 1:1¹®ÀÇ °Ô½ÃÆÇ ¶Ç´Â °í°´¼¾ÅÍ(1577-2555)·Î ¿¬¶ô Áֽñ⠹ٶø´Ï´Ù.
¼ÒºñÀÚ ÇÇÇغ¸»óÀÇ ºÐÀïó¸® µî¿¡ °üÇÑ »çÇ×Àº ¼ÒºñÀÚºÐÀïÇØ°á±âÁØ(°øÁ¤°Å·¡À§¿øȸ °í½Ã)¿¡ µû¶ó ºñÇØ º¸»ó ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù.
|
±³È¯ ¹× ¹ÝÇ°ÀÌ °¡´ÉÇÑ °æ¿ì |
|
|
»óÇ°À» °ø±Þ ¹ÞÀ¸½Å ³¯·ÎºÎÅÍ 7ÀÏÀ̳» °¡´ÉÇÕ´Ï´Ù. |
|
°ø±Þ¹ÞÀ¸½Å »óÇ°ÀÇ ³»¿ëÀÌ Ç¥½Ã, ±¤°í ³»¿ë°ú ´Ù¸£°Å³ª ´Ù¸£°Ô ÀÌÇàµÈ °æ¿ì¿¡´Â °ø±Þ¹ÞÀº ³¯·ÎºÎÅÍ 3°³¿ùÀ̳», ±×»ç½ÇÀ» ¾Ë°Ô µÈ ³¯ ¶Ç´Â ¾Ë ¼ö ÀÖ¾ú´ø ³¯·ÎºÎÅÍ 30ÀÏÀ̳» °¡´ÉÇÕ´Ï´Ù. |
|
»óÇ°¿¡ ¾Æ¹«·± ÇÏÀÚ°¡ ¾ø´Â °æ¿ì ¼ÒºñÀÚÀÇ °í°´º¯½É¿¡ ÀÇÇÑ ±³È¯Àº »óÇ°ÀÇ Æ÷Àå»óÅ µîÀÌ ÀüÇô ¼Õ»óµÇÁö ¾ÊÀº °æ¿ì¿¡ ÇÑÇÏ¿© °¡´ÉÇÕ´Ï´Ù.
|
|
|
|
±³È¯ ¹× ¹ÝÇ°ÀÌ ºÒ°¡´ÉÇÑ °æ¿ì |
|
|
|
°í°´´ÔÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óÇ° µîÀÌ ¸ê½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì´Â ºÒ°¡´ÉÇÕ´Ï´Ù. (´Ü, »óÇ°ÀÇ ³»¿ëÀ» È®ÀÎÇϱâ À§ÇÏ¿© Æ÷Àå µîÀ» ÈѼÕÇÑ °æ¿ì´Â Á¦¿Ü) |
|
½Ã°£ÀÌ Áö³²¿¡ µû¶ó ÀçÆǸŰ¡ °ï¶õÇÒ Á¤µµ·Î ¹°Ç°ÀÇ °¡Ä¡°¡ ¶³¾îÁø °æ¿ì´Â ºÒ°¡´ÉÇÕ´Ï´Ù. |
|
Æ÷Àå °³ºÀµÇ¾î »óÇ° °¡Ä¡°¡ ÈÑ¼ÕµÈ °æ¿ì´Â ºÒ°¡´ÉÇÕ´Ï´Ù. |
|
|
´Ù¹è¼ÛÁöÀÇ °æ¿ì ¹ÝÇ° ȯºÒ |
|
|
|
´Ù¹è¼ÛÁöÀÇ °æ¿ì ´Ù¸¥ Áö¿ªÀÇ ¹ÝÇ°À» µ¿½Ã¿¡ ÁøÇàÇÒ ¼ö ¾ø½À´Ï´Ù. |
|
1°³ Áö¿ªÀÇ ¹ÝÇ°ÀÌ ¿Ï·áµÈ ÈÄ ´Ù¸¥ Áö¿ª ¹ÝÇ°À» ÁøÇàÇÒ ¼ö ÀÖÀ¸¹Ç·Î, ÀÌÁ¡ ¾çÇØÇØ Áֽñ⠹ٶø´Ï´Ù. |
|
|
|
|
|
|