´ë·®±¸¸ÅȨ >
¿Ü±¹µµ¼­
>
´ëÇб³Àç/Àü¹®¼­Àû
>
±â¼ú°úÇÐ ÀϹÝ

Physics and chemistry of interfaces
Á¤°¡ 59,000¿ø
ÆǸŰ¡ 59,000¿ø (0% , 0¿ø)
I-Æ÷ÀÎÆ® 1,770P Àû¸³(3%)
ÆǸŻóÅ ÆǸÅÁß
ºÐ·ù ±â¼ú°úÇÐ ÀϹÝ
ÀúÀÚ John Wiley & Sons , Karlheinz Graf , Michael Kappl , Hans-Jurgen Butt
ÃâÆÇ»ç/¹ßÇàÀÏ Wiley-VCH / 2023.08.12
ÆäÀÌÁö ¼ö 480 page
ISBN 9783527414055
»óÇ°ÄÚµå 356794031
°¡¿ëÀç°í Àç°íºÎÁ·À¸·Î ÃâÆÇ»ç ¹ßÁÖ ¿¹Á¤ÀÔ´Ï´Ù.
 
ÁÖ¹®¼ö·® :
´ë·®±¸¸Å Àü¹® ÀÎÅÍÆÄÅ© ´ë·®ÁÖ¹® ½Ã½ºÅÛÀ» ÀÌ¿ëÇÏ½Ã¸é °ßÀû¿¡¼­ºÎÅÍ ÇàÁ¤¼­·ù±îÁö Æí¸®ÇÏ°Ô ¼­ºñ½º¸¦ ¹ÞÀ¸½Ç ¼ö ÀÖ½À´Ï´Ù.
µµ¼­¸¦ °ßÀûÇÔ¿¡ ´ãÀ¸½Ã°í ½Ç½Ã°£ °ßÀûÀ» ¹ÞÀ¸½Ã¸é ±â´Ù¸®½Ç ÇÊ¿ä¾øÀÌ ÇÒÀιÞÀ¸½Ç ¼ö ÀÖ´Â °¡°ÝÀ» È®ÀÎÇÏ½Ç ¼ö ÀÖ½À´Ï´Ù.
¸ÅÁÖ ¹ß¼ÛÇØ µå¸®´Â ÀÎÅÍÆÄÅ©ÀÇ ½Å°£¾È³» Á¤º¸¸¦ ¹Þ¾Æº¸½Ã¸é »óÇ°ÀÇ ¼±Á¤À» ´õ¿í Æí¸®ÇÏ°Ô ÇÏ½Ç ¼ö ÀÖ½À´Ï´Ù.

 ´ë·®±¸¸ÅȨ  > ¿Ü±¹µµ¼­  > ´ëÇб³Àç/Àü¹®¼­Àû  > ±â¼ú°úÇÐ ÀϹÝ

 
¸ñÂ÷
1. Introduction 2. Liquid Surfaces 2.1 Microscopic Picture of a Liquid Surface 2.2 Surface Tension 2.3 Equation of Young and Laplace 2.3.1 Curved Liquid Surfaces 2.3.2 Derivation of Young?Laplace Equation 2.3.3 Applying the Young?Laplace Equation 2.4 Techniques to Measure Surface Tension 2.5 Kelvin Equation 2.6 Capillary Condensation 2.7 Nucleation Theory 2.8 Summary 2.9 Exercises 3. Thermodynamics of Interfaces 3.1 Thermodynamic Functions for Bulk Systems 3.2 Surface Excess 3.3 Thermodynamic Relations for Systems with an Interface 3.3.1 Internal Energy and Helmholtz Energy 3.3.2 Equilibrium Conditions 3.3.3 Location of Interface 3.3.4 Gibbs Energy and Enthalpy 3.3.5 Interfacial Excess Energies 3.4 Pure Liquids 3.5 Gibbs Adsorption Isotherm 3.5.1 Derivation 3.5.2 System of Two Components 3.5.3 Experimental Aspects 3.5.4 Marangoni Effect 3.6 Summary 3.7 Exercises 4. Charged Interfaces and the Electric Double Layer 4.1 Introduction 4.2 Poisson?Boltzmann Theory of Diffuse Double Layer 4.2.1 Poisson?Boltzmann Equation 4.2.2 Planar Surfaces 4.2.3 The Full One-Dimensional Case 4.2.4 The Electric Double Layer around a Sphere 4.2.5 Grahame Equation 4.2.6 Capacitance of Diffuse Electric Double Layer 4.3 Beyond Poisson?Boltzmann Theory 4.3.1 Limitations of Poisson?Boltzmann Theory 4.3.2 Stern Layer 4.4 Gibbs Energy of Electric Double Layer 4.5 Electrocapillarity 4.5.1 Theory 4.5.2 Measurement of Electrocapillarity 4.6 Examples of Charged Surfaces 4.7 Measuring Surface Charge Densities 4.7.1 Potentiometric Colloid Titration 4.7.2 Capacitances 4.8 Electrokinetic Phenomena: the Zeta Potential 4.8.1 Navier?Stokes Equation 4.8.2 Electro-Osmosis and Streaming Potential 4.8.3 Electrophoresis and Sedimentation Potential 4.9 Types of Potential 4.10 Summary 4.11 Exercises 5. Surface Forces 5.1 Van der Waals Forces between Molecules 5.2 Van der Waals Force between Macroscopic Solids 5.2.1 Microscopic Approach 5.2.2 Macroscopic Calculation ? Lifshitz Theory 5.2.3 Retarded Van der Waals Forces 5.2.4 Surface Energy and the Hamaker Constant 5.3 Concepts for the Description of Surface Forces 5.3.1 The Derjaguin Approximation 5.3.2 Disjoining Pressure 5.4 Measurement of Surface Forces 5.5 Electrostatic Double-Layer Force 5.5.1 Electrostatic Interaction between Two Identical Surfaces 5.5.2 DLVO Theory 5.6 Beyond DLVO Theory 5.6.1 Solvation Force and Confined Liquids 5.6.2 Non-DLVO Forces in Aqueous Medium 5.7 Steric and Depletion Interaction 5.7.1 Properties of Polymers 5.7.2 Force between Polymer-Coated Surfaces 5.7.3 Depletion Forces 5.8 Spherical Particles in Contact 5.9 Summary 5.10 Exercises 6. Contact Angle Phenomena and Wetting 6.1 Young?s Equation 6.1.1 Contact Angle 6.1.2 Derivation 6.1.3 Line Tension 6.1.4 Complete Wetting and Wetting Transitions 6.1.5 Theoretical Aspects of Contact Angle Phenomena 6.2 Important Wetting Geometries 6.2.1 Capillary Rise 6.2.2 Particles at Interfaces 6.2.3 Network of Fibers 6.3 Measurement of Contact Angles 6.3.1 Experimental Methods 6.3.2 Hysteresis in Contact Angle Measurements 6.3.3 Surface Roughness and Heterogeneity 6.3.4 Superhydrophobic Surfaces 6.4 Dynamics of Wetting and Dewetting 6.4.1 Spontaneous Spreading 6.4.2 Dynamic Contact Angle 6.4.3 Coating and Dewetting 6.5 Applications 6.5.1 Flotation 6.5.2 Detergency 6.5.3 Microfluidics 6.5.4 Electrowetting 6.6 Thick Films: Spreading of One Liquid on Another 6.7 Summary 6.8 Exercises 7. Solid Surfaces 7.1 Introduction 7.2 Description of Crystalline Surfaces 7.2.1 Substrate Structure 7.2.2 Surface Relaxation and Reconstruction 7.2.3 Description of Adsorbate Structures 7.3 Preparation of Clean Surfaces 7.3.1 Thermal Treatment 7.3.2 Plasma or Sputter Cleaning 7.3.3 Cleavage 7.3.4 Deposition of Thin Films 7.4 Thermodynamics of Solid Surfaces 7.4.1 Surface Energy, Surface Tension, and Surface Stress 7.4.2 Determining Surface Energy 7.4.3 Surface Steps and Defects 7.5 Surface Diffusion 7.5.1 Theoretical Description of Surface Diffusion 7.5.2 Measurement of Surface Diffusion 7.6 Solid?Solid Interfaces 7.7 Microscopy of Solid Surfaces 7.7.1 Optical Microscopy 7.7.2 Electron Microscopy 7.7.3 Scanning Probe Microscopy 7.8 Diffraction Methods 7.8.1 Diffraction Patterns of Two-Dimensional Periodic Structures 7.8.2 Diffraction with Electrons, X-Rays, and Atoms 7.9 Spectroscopic Methods 7.9.1 Optical Spectroscopy of Surfaces 7.9.2 Spectroscopy Using Mainly Inner Electrons 7.9.3 Spectroscopy with Outer Electrons 7.9.4 Secondary Ion Mass Spectrometry 7.10 Summary 7.11 Exercises 8. Adsorption 8.1 Introduction 8.1.1 Definitions 8.1.2 Adsorption Time 8.1.3 Classification of Adsorption Isotherms 8.1.4 Presentation of Adsorption Isotherms 8.2 Thermodynamics of Adsorption 8.2.1 Heats of Adsorption 8.2.2 Differential Quantities of Adsorption and Experimental Results 8.3 Adsorption Models 8.3.1 Langmuir Adsorption Isotherm 8.3.2 Langmuir Constant and Gibbs Energy of Adsorption 8.3.3 Langmuir Adsorption with Lateral Interactions 8.3.4 BET Adsorption Isotherm 8.3.5 Adsorption on Heterogeneous Surfaces 8.3.6 Potential Theory of Polanyi 8.4 Experimental Aspects of Adsorption from Gas Phase 8.4.1 Measuring Adsorption to Planar Surfaces 8.4.2 Measuring Adsorption to Powders and Textured Materials 8.4.3 Adsorption to Porous Materials 8.4.4 Special Aspects of Chemisorption 8.5 Adsorption from Solution 8.6 Summary 8.7 Exercises 9. Surface Modification 9.1 Introduction 9.2 Physical and Chemical Vapor Deposition 9.2.1 Physical Vapor Deposition 9.2.2 Chemical Vapor Deposition 9.3 Soft Matter Deposition 9.3.1 Self-Assembled Monolayers 9.3.2 Physisorption of Polymers 9.3.3 Polymerization on Surfaces 9.3.4 Plasma Polymerization 9.4 Etching Techniques 9.5 Lithography 9.6 Summary 9.7 Exercises 10. Friction, Lubrication, and Wear 10.1 Friction 10.1.1 Introduction 10.1.2 Amontons? and Coulomb?s Law 10.1.3 Static, Kinetic, and Stick-Slip Friction 10.1.4 Rolling Friction 10.1.5 Friction and Adhesion 10.1.6 Techniques to Measure Friction 10.1.7 Macroscopic Friction 10.1.8 Microscopic Friction 10.2 Lubrication 10.2.1 Hydrodynamic Lubrication 10.2.2 Boundary Lubrication 10.2.3 Thin-Film Lubrication 10.2.4 Superlubricity 10.2.5 Lubricants 10.3 Wear 10.4 Summary 10.5 Exercises 11. Surfactants, Micelles, Emulsions, and Foams 11.1 Surfactants 11.2 Spherical Micelles, Cylinders, and Bilayers 11.2.1 Critical Micelle Concentration 11.2.2 Influence of Temperature 11.2.3 Thermodynamics of Micellization 11.2.4 Structure of Surfactant Aggregates 11.2.5 Biological Membranes 11.3 Macroemulsions 11.3.1 General Properties 11.3.2 Formation 11.3.3 Stabilization 11.3.4 Evolution and Aging 11.3.5 Coalescence and Demulsification 11.4 Microemulsions 11.4.1 Size of Droplets 11.4.2 Elastic Properties of Surfactant Films 11.4.3 Factors Influencing the Structure of Microemulsions 11.5 Foams 11.5.1 Classification, Application, and Formation 11.5.2 Structure of Foams 11.5.3 Soap Films 11.5.4 Evolution of Foams 11.6 Summary 11.7 Exercises 12. Thin Films on Surfaces of Liquids 12.1 Introduction 12.2 Phases of Monomolecular Films 12.3 Experimental Techniques to Study Monolayers 12.3.1 Optical Microscopy 12.3.2 Infrared and Sum Frequency Generation Spectroscopy 12.3.3 X-Ray Reflection and Diffraction 12.3.4 Surface Potential 12.3.5 Rheologic Properties of Liquid Surfaces 12.4 Langmuir?Blodgett Transfer 12.5 Summary 12.6 Exercises 13. Solutions to Exercises 14. Analysis of Diffraction Patterns 14.1 Diffraction at Three-Dimensional Crystals 14.1.1 Bragg Condition 14.1.2 Laue Condition 14.1.3 Reciprocal Lattice 14.1.4 Ewald Construction 14.2 Diffraction at Surfaces 14.3 Intensity of Diffraction Peaks Appendix A Symbols and Abbreviations References Index

ÀúÀÚ
John Wiley & Sons
Karlheinz Graf
Michael Kappl
Hans-Jurgen Butt

ÀÌ ÃâÆÇ»çÀÇ °ü·Ã»óÇ°
Perspectives on Structure and Mechanism in Organic Chemistry | Carroll, Felix A | Wiley-VCH
Reaction Mechanisms in Organic Chemistry | Balci, Metin | Wiley-VCH
Chemometrics | Matthias Otto | Wiley-VCH
Fundamentals of Classical Statistical Thermodynamics | Searles, Debra Joy, Williams, Stephen Rodney | Wiley-VCH
An Introduction to Nuclear Materials | Murty, K. Linga | Wiley-VCH

ÀÌ ºÐ¾ß ½Å°£ °ü·Ã»óÇ°
Professional Adobe Flex 2 | Tretola, Rich/ Barber, Simon/ Erickson, Renaun | Wiley
 
µµ¼­¸¦ ±¸ÀÔÇϽŠ°í°´ ¿©·¯ºÐµéÀÇ ¼­ÆòÀÔ´Ï´Ù.
ÀÚÀ¯·Î¿î ÀÇ°ß ±³È¯ÀÌ °¡´ÉÇÕ´Ï´Ù¸¸, ¼­ÆòÀÇ ¼º°Ý¿¡ ¸ÂÁö ¾Ê´Â ±ÛÀº »èÁ¦µÉ ¼ö ÀÖ½À´Ï´Ù.

µî·ÏµÈ ¼­ÆòÁß ºÐ¾ß¿Í »ó°ü¾øÀÌ ¸ÅÁÖ ¸ñ¿äÀÏ 5ÆíÀÇ ¿ì¼öÀÛÀ» ¼±Á¤ÇÏ¿©, S-Money 3¸¸¿øÀ» Àû¸³Çص帳´Ï´Ù.
ÃÑ 0°³ÀÇ ¼­ÆòÀÌ ÀÖ½À´Ï´Ù.